metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊9D6, C6.302+ (1+4), C22⋊C4⋊8D6, C22≀C2⋊8S3, C23⋊2D6⋊7C2, (C2×D4).87D6, C24⋊4S3⋊9C2, D6⋊C4⋊15C22, (C2×C12).32C23, (C2×C6).138C24, (S3×C23)⋊8C22, (C23×C6)⋊11C22, C2.32(D4⋊6D6), C23.12D6⋊13C2, C3⋊1(C24⋊C22), (C4×Dic3)⋊18C22, (C2×Dic6)⋊23C22, (C6×D4).112C22, C23.11D6⋊15C2, C6.D4⋊18C22, (C22×S3).57C23, C22.159(S3×C23), C23.120(C22×S3), (C22×C6).183C23, (C2×Dic3).63C23, (C3×C22≀C2)⋊9C2, (C3×C22⋊C4)⋊8C22, (C2×C4).32(C22×S3), (C2×C3⋊D4).22C22, SmallGroup(192,1153)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 800 in 260 conjugacy classes, 91 normal (12 characteristic)
C1, C2 [×3], C2 [×6], C3, C4 [×9], C22, C22 [×26], S3 [×2], C6 [×3], C6 [×4], C2×C4 [×3], C2×C4 [×6], D4 [×9], Q8 [×3], C23, C23 [×3], C23 [×8], Dic3 [×6], C12 [×3], D6 [×10], C2×C6, C2×C6 [×16], C42 [×3], C22⋊C4 [×3], C22⋊C4 [×15], C2×D4 [×3], C2×D4 [×6], C2×Q8 [×3], C24, C24, Dic6 [×3], C2×Dic3 [×6], C3⋊D4 [×6], C2×C12 [×3], C3×D4 [×3], C22×S3 [×2], C22×S3 [×3], C22×C6, C22×C6 [×3], C22×C6 [×3], C22≀C2, C22≀C2 [×5], C4.4D4 [×9], C4×Dic3 [×3], D6⋊C4 [×6], C6.D4 [×9], C3×C22⋊C4 [×3], C2×Dic6 [×3], C2×C3⋊D4 [×6], C6×D4 [×3], S3×C23, C23×C6, C24⋊C22, C23.11D6 [×6], C23.12D6 [×3], C23⋊2D6 [×3], C24⋊4S3 [×2], C3×C22≀C2, C24⋊9D6
Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C24, C22×S3 [×7], 2+ (1+4) [×3], S3×C23, C24⋊C22, D4⋊6D6 [×3], C24⋊9D6
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=f2=1, ab=ba, eae-1=ac=ca, ad=da, faf=acd, fbf=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
(1 14)(2 18)(3 16)(4 31)(5 35)(6 33)(7 17)(8 15)(9 13)(10 34)(11 32)(12 36)(19 43)(20 30)(21 45)(22 26)(23 47)(24 28)(25 39)(27 41)(29 37)(38 44)(40 46)(42 48)
(1 37)(2 41)(3 39)(4 40)(5 38)(6 42)(7 19)(8 23)(9 21)(10 22)(11 20)(12 24)(13 45)(14 29)(15 47)(16 25)(17 43)(18 27)(26 34)(28 36)(30 32)(31 46)(33 48)(35 44)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 16)(14 17)(15 18)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 45)(26 46)(27 47)(28 48)(29 43)(30 44)(31 34)(32 35)(33 36)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 36)(14 31)(15 32)(16 33)(17 34)(18 35)(19 22)(20 23)(21 24)(25 48)(26 43)(27 44)(28 45)(29 46)(30 47)(37 40)(38 41)(39 42)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 14)(15 18)(16 17)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)(25 29)(26 28)(31 36)(32 35)(33 34)(43 45)(46 48)
G:=sub<Sym(48)| (1,14)(2,18)(3,16)(4,31)(5,35)(6,33)(7,17)(8,15)(9,13)(10,34)(11,32)(12,36)(19,43)(20,30)(21,45)(22,26)(23,47)(24,28)(25,39)(27,41)(29,37)(38,44)(40,46)(42,48), (1,37)(2,41)(3,39)(4,40)(5,38)(6,42)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(13,45)(14,29)(15,47)(16,25)(17,43)(18,27)(26,34)(28,36)(30,32)(31,46)(33,48)(35,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,16)(14,17)(15,18)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,45)(26,46)(27,47)(28,48)(29,43)(30,44)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,36)(14,31)(15,32)(16,33)(17,34)(18,35)(19,22)(20,23)(21,24)(25,48)(26,43)(27,44)(28,45)(29,46)(30,47)(37,40)(38,41)(39,42), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,14)(15,18)(16,17)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,29)(26,28)(31,36)(32,35)(33,34)(43,45)(46,48)>;
G:=Group( (1,14)(2,18)(3,16)(4,31)(5,35)(6,33)(7,17)(8,15)(9,13)(10,34)(11,32)(12,36)(19,43)(20,30)(21,45)(22,26)(23,47)(24,28)(25,39)(27,41)(29,37)(38,44)(40,46)(42,48), (1,37)(2,41)(3,39)(4,40)(5,38)(6,42)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(13,45)(14,29)(15,47)(16,25)(17,43)(18,27)(26,34)(28,36)(30,32)(31,46)(33,48)(35,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,16)(14,17)(15,18)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,45)(26,46)(27,47)(28,48)(29,43)(30,44)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,36)(14,31)(15,32)(16,33)(17,34)(18,35)(19,22)(20,23)(21,24)(25,48)(26,43)(27,44)(28,45)(29,46)(30,47)(37,40)(38,41)(39,42), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,14)(15,18)(16,17)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,29)(26,28)(31,36)(32,35)(33,34)(43,45)(46,48) );
G=PermutationGroup([(1,14),(2,18),(3,16),(4,31),(5,35),(6,33),(7,17),(8,15),(9,13),(10,34),(11,32),(12,36),(19,43),(20,30),(21,45),(22,26),(23,47),(24,28),(25,39),(27,41),(29,37),(38,44),(40,46),(42,48)], [(1,37),(2,41),(3,39),(4,40),(5,38),(6,42),(7,19),(8,23),(9,21),(10,22),(11,20),(12,24),(13,45),(14,29),(15,47),(16,25),(17,43),(18,27),(26,34),(28,36),(30,32),(31,46),(33,48),(35,44)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,16),(14,17),(15,18),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,45),(26,46),(27,47),(28,48),(29,43),(30,44),(31,34),(32,35),(33,36)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,36),(14,31),(15,32),(16,33),(17,34),(18,35),(19,22),(20,23),(21,24),(25,48),(26,43),(27,44),(28,45),(29,46),(30,47),(37,40),(38,41),(39,42)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,14),(15,18),(16,17),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37),(25,29),(26,28),(31,36),(32,35),(33,34),(43,45),(46,48)])
Matrix representation ►G ⊆ GL8(𝔽13)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 11 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 1 | 2 | 0 |
11 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 | 7 | 3 |
0 | 0 | 0 | 0 | 3 | 6 | 10 | 6 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 4 | 12 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 9 | 0 | 0 | 1 |
G:=sub<GL(8,GF(13))| [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,11,1,11,0,0,0,0,0,0,0,1,0,0,0,0,1,2,0,2,0,0,0,0,0,1,0,0],[11,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,11,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,1,0,7,3,0,0,0,0,3,12,0,6,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,8,0,4,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,9,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | ··· | 4I | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 12 | 12 | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | 2+ (1+4) | D4⋊6D6 |
kernel | C24⋊9D6 | C23.11D6 | C23.12D6 | C23⋊2D6 | C24⋊4S3 | C3×C22≀C2 | C22≀C2 | C22⋊C4 | C2×D4 | C24 | C6 | C2 |
# reps | 1 | 6 | 3 | 3 | 2 | 1 | 1 | 3 | 3 | 1 | 3 | 6 |
In GAP, Magma, Sage, TeX
C_2^4\rtimes_9D_6
% in TeX
G:=Group("C2^4:9D6");
// GroupNames label
G:=SmallGroup(192,1153);
// by ID
G=gap.SmallGroup(192,1153);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,1571,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=f^2=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f=a*c*d,f*b*f=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations